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Distribution of time-headways in a particle-hopping model of vehicular traffic
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Some prototype models of interacting particles driven far from equilibrium are known to capture many
qualitative features of vehicular traffic. Thiene headways defined as the time interval between two succes-
sive vehicles recorded by a detector placed at a fixed position on the highway. We report analytical calculation
of the distributions of the time headways in some special cases of the Nagel-Schreckenberg model, which is a
particle-hopping model of vehicular traffic on idealized single-lane highways. We also present numerical
results for the time-headway distribution in more general situations in this mM&k)63-651X98)11808-1

PACS numbsg(s): 05.60+w, 05.40:+j, 89.40+k

I. INTRODUCTION so thatX,— X,+V, whereX,, denotes the position of the
nth vehicle at timet.

The techniques of fluid dynamics and statistical mechan- The nonvanishing braking probabilify is essential for a
ics have been powerful tools in theoretical investigations of gealistic modeling of traffic flow[5] and, therefore, the NS
wide variety of problems in the science and engineering ofnodel may be regarded as stochastic cellular autofitdta
vehicular traffic[1—9]. The main aim of this Brief Reportis  an effectively free flow of traffic takes place when the den-
to calculate the distribution of thtéme headway$TH'S) ina  sjty of vehicles is sufficiently low, whereas high density
particle-hopping model, namely, thagel-Schreckenberg |eads to congestion and traffic jams. The density corre-
(NS) model[4] of vehicular traffic on idealized single-lane sponding to the maximum flux is usually called the
highways, where the TH is defined as the time interval be'optimumdensity.
tween the departurgsr arrivalg of tvx{o succeg;ive vehicleg In the NS model, the number of empty lattice sites in front
recorded by a detector placed at a fixed position on the high- Co )
way [1]. This distribution is not merely of academic interest of a vehicle is tak‘en to be a measure of the gorrespondlpg
to statistical physicists, but is also of practical interest tod!stapce headway; Fhe exact analytlcal. expression for the dis-
traffic engineer$1]. tribution of these distance headways in the steady stat.e has

been calculated fo¥,,,=1 [8,9]. There are several earlier
papers, published by statisticians and traffic engineers, where
Il. MODEL the form of the TH distribution was derived on the basis of

e ‘ ; euristic argument$10]. However, to our knowledge, no
omlarjdti?serr)lzirgﬁ: Taiﬁglen%mm;?;l.s E;?Reo:‘stiplr:tst’iecgtes?tebg léerivation of the TH distribution_ in the_ particle-hopping
can be either empty or occupied by at most one “vehicle.” ImedGIs has been reported so far in the literature.

periodic boundary condition is imposed, the densityf the

vehicles isN/L, whereN(=<L) is the total number of ve-

hicles. In the NS moddl] the speed/ of each vehicle can IIl. RESULTS AND DISCUSSION

take one of theV,*1 allowed integer values V A. Analytical calculations for V=1
=0,1,...Vmax Supposé/, is the speed of thath vehicle at
time t. At eachdiscrete timestept—t+1, the arrangement
of N vehicles is updateth parallel according to the follow-
ing “rules.”

Step 1: Accelerationlf, V,,<V . the speed of thath
vehicle is increased by 1, i.eV,,—V,+1.

Step 2: Deceleration (due to other vehicle§)d,, is the
gap in between thath vehicle and the vehicle in front of it,
and if d,<V,,, the speed of tha-th vehicle is reduced to
d,—1,ie.,V,—d,—1.

Step 3: Randomizatiorlf V>0, the speed of thath
vehicle is decreased randomly by unftye., V,—V,—1)
with probability p (0<p=<1); p, the random deceleration
probability, is identical for all the vehicles and does not
change during the updating.

Step 4: Vehicle movemeiitach vehicle is moved forward

For the convenience of our analytical calculations, we
change the order of the steps in the update rules in a manner
that does not influence the steady-state properties of the
model. Following Schreckenbegg al.[7], we assume a se-
quence of step2-3-4-1,instead ofl-2-3-4; theadvantage
is that there is no vehicle withY =0 immediately after the
acceleration step. ConsequentlyVif,..=1, we can then use
a binary site variabler to describe the state of each site;
=0 represents an empty site and=1 represents a site oc-
cupied by a vehicle whose speed is unity.

We label the position of the detector hy=0, the site
immediately in front of it byj=1, and so on. The detector
clock resets ta=0 everytime a vehicle leaves the detector
site. We begin our analytical calculations fof,,,=1 by
writing P(t), the probability of a TH between a “leading”
vehicle(LV) and the “following” vehicle (FV) as

t—1
* Author to whom all correspondence should be addressed. Elec- P(t)= E P(t) Q' (t—tq|ty), 1)
tronic address: debch@iitk.ernet.in t1=1
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whereP(t,) is the probability that there is a time interval

y
between the departure of the LV and the arrival of the FV at C(1j0)=c(Q1)= a’ (6)
the detector site, an@’(t—t,|t;) is the conditional prob-
ability that the FV halts fot—t; time steps when it arrived y
at the detector sitg time steps after the departure of the LV. cln=cn=1- o (7)
1. Analytical calculations for \j,,=1: where
The factorization approximation 1
Strictly speaking, there are correlations between the time y= ﬁ(l_ V1-4qcd), (8)

of arrivalt; and the halting timé—t,. However, for the time . . ]
being, we make the “factorization approximation” under d=1—p andd=1-c. For all configurations witht;>n,

which the expressiofil) for P(t) can be written as t;—1 time steps elapse in crossing-1 bonds(as the last

bond is crossed certainly at the last time $tdfus
t—1
ty

=2, Pt)Q(t-t), @ P(t)= Y, TI(n)g"ph"t=IC, ;. ©

n=1

where Q(t—t;) is the probability that the FV halts at the Using expressiot3) for II(n) in Eq. (9) we obtain

detector site fot—t, time steps; the leading corrections to -

this approximation, arising from the correlations, will be in- P(t1)=C(1]/0)g[C(0[Q)g+p]™*. (10

corporated later in Sec. Il A 2. N lcul S I fi .
To calculateP(t;), we have to consider spatial configu- of theeth;vr%Cirlfﬁt?gté)) byt io_ntS|de|_r||nrg athcon E];rz?:n;

rations att=0 for which the FV can reach the detector site (L <o ob) att=1. Here, the underiine

within t, steps. The configurations of interest are thu; of thepart implies that tﬁé_ldetector site is occupied by the FV, and
form (100---0]0) where n=12,...t;. The underlined \ye consider configurations with a queue af 1) vehicles
zero impli€s that we have to find the conditional steady-stat@nead of it and the foremost vehicle of this queue has an
probability for the given configuration subject to the condi- €Mpty site ahead. The steady-state probability of this con-
tion that the underlined sitédetector site is empty. This figuration is given by
probability, IT(n), in the two-cluster approximation is given I1'(m) = C(1|11--- 10) = {C(1]1)}™"" C(1]0) (12)
by [7,9] e B
II(n)=C(1|0){C(0]|0)}" 1, (3) in the two-cluster approximation. To find all possible con-
figurations of this type that contribute to the waiting time of
where C gives the two-cluster steady-state configurationak, time steps, we have to consider queue sizes up,to
probability for the argument configuration, and the underm=<t,). Thus, using expressiofl1) for IT'(m), we obtain

lined symbols imply the conditional, as usual. The expres- t
sions for the varioug’s are given by[7,9] Qty)= >, TI'(m)gmplz-me-1c
y m=1
colo=com=1-74, @ — c(1lo)alac(LL) +plet 12
_ _y The TH distribution,P(t), can now be calculated using
Coln=c(1/0) c’ ®) Egs.(2), (10), and(12), and is given by

{C<0|Q)q+p}t‘l—{q0<1|1>+p}t‘T
{C(0]0)g+p}—{aC(1]|1)+p}

(-

P(t)=qZC(1|Q)C(1|0)[

where the final resulfEq. (13)] was obtained using Egs. FV is atj=0, it hinders the forward movement of the FV.

(4)—(7) andy is given by Eq.(8). Therefore, the exact TH distribution is given by H{d),
whereP(t,) is given by Eq.(10) and the conditional prob-
2. Analytical calculations for \j,,x=1: ability Q' (t—t4]t;) is given by

Beyond factorization approximation

In approximatingQ’ (t—t,|t;) by Q(t—t;), we ignored t-1

the fact that, forVi,a=1, the LV iscertainly present a — Q’(t—ty|t;)= >, {qp!~"1S(t;) +qR(ty,t—t;)} (14)
=1 att=0. If the LV is still at sitej=1 att>t,, when the t1=1
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where

ty

S(t)=Q(1)+Q2)+--- +Q(t)= X Qlts) (19)
<

and

R(ty,t)=Q(t;+1)p2 2+ Q(t; +2)p'2 3
+o Q- 1)

tytt,—1

= D Qtgphrttztad,

tg=t;+1

(16)

Q(t,) being given by Eq(12). The first series on the right-

hand side of Eq(14) accounts for the situation where the LV

hops out of the sit¢=1 before the FV arrives at the sije
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FIG. 1. The time-headway distribution in the NS model with
Vima=1 (p=0.5) for the densitiee=0.1(+), c=0.25(X), andc

=0, and the secpnd series accounts for the situation V_VherQO.S(*). The continuous curves represent the analytical result,
the FV arrives afj =0 before the LV hops out of the site \yhje the discrete data points have been obtained from computer

j=1. The general term in Eq16) means that the LV halts
for tg time steps (3>t;), the FV being blocked at sit¢

=0 for (t3—t;) time steps, contributing only a factor of

Q(t3). After the LV hops out of sitg =1 (att=t3), the FV
continues to halt at sitg=0 uptot=t, +t, by braking, pick-
ing up a factomp'1*t27ts1,

Using expressionil2) for Q(t3) in Egs.(15) and(16) we
obtain

S(ty)=1-[C(1|1)g+p]s (17
and
C(1/0)
WMJ9=EaHﬂaylm+pﬁ
x{[c(Dg+p]zt-p27Y. (19

So, finally, using Eqs(17), (18) and(14) in Eq. (1), we
obtain the total probability distribution

P(t)=q C(l_m)}Atl_Fq{c(l_m) tl_q[c(l_w)
c(11) C(0/0) C(11)
C(1/0)
L[ €10 o
—q [m}(t—l)ﬁxp (19

where A=1—qC(1/0) and B=1—-qC(1|0). In terms of
p.q,c,d, andy the TH distributionP(t) can be written as

ay

ooy |- (@yie?

P(t)=

+

qy _
ﬂ}{l—(qy/d)}I !

ay  qy
c-y d-y

}w-l—qa¢—1>w-2. (20

simulation.

Note that, in contrast to the approximate expressi®),
the exact expressiof20) of P(t) possesses the well-known
particle-hole symmetr{4] in the NS model foV,,,,=1, i.e.,
the expression for the densitiesand 1-c are identicalsee
Fig. 1.

B. Numerical results for V 5,1

As analytical calculations are too complicated to carry
through forV .1, we have computed the TH distributions
for all Vi,,,>1 only through computer simulation. In Fig. 2
we present our numerical data for the TH distribution in the
NS model withV,,=5, as several earlier works have dem-
onstrated that this particular choice ¥f,,, leads to quite
realistic qualitative descriptions of some other features of
vehicular traffic on highways. The qualitative features of the
distribution in Fig. 2 are similar to those in Fig. 1, except the
breakdown of particle-hole symmetry for all,,,>>1. In ad-
dition, P(t=0)=0, but P(t=1) need not vanish when
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FIG. 2. The time-headway distribution in the NS model
with V=5 (p=0.5) for the densities ¢=0.10(+),
0.25(x), 0.50*), 0.75@), and 0.90M). The discrete data points
have been obtained from computer simulation, while the continuous
curves are merely guides to the eye.
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2]

Vmax=5 In contrast to the fact tha®(t<1)=0, irrespective
of the density of the vehicles, whén,,,=1.

Recall that the fluxg of the vehicles can be written ag
=N/T whereT== ,t; is the sum of the TH recorded for
all the N vehicles. One can rewritg as q=1/[(1/N)Z;t;]
=1/T,, whereT,, is the average TH. Therefor&,, is ex-
pected to exhibit a minimum, just asis known to exhibit a
maximum, atc=c,, with the variation of densityc of the

e

&~
%
x

¥

*,
1

Most probable time headway

vehicles; this is consistent with one’s intuitive expectation

that both at very low and very high densities there are long ol & . e ]

time gaps in between the departures of two successive ve-

hicles from a given site. 0 07 6.2 03 04 05 06 07 08 0.3 10
We have plotted the most probable TH,,, as a func- Density

thn of .the denglt)f: in Fig. 3; the trend of V§r|at|on OTmp FIG. 3. The most probable time-headway plotted against the
with ¢ is very similar to that off,. The particle-hole sym- density of the vehicles in the NS model. The full line, obtained from
metry of theT,, versusc curve also breaks down for all expression20), corresponds t&,,,=1, and the symbof repre-
Vinax>1. sents the corresponding numerical data obtained from our computer
simulation. The discrete data points, represented by the symbol
IV. SUMMARY AND CONCLUSION correspond toV,,,=5, and have been obtained from computer
simulation; the dotted line joining these data points serves merely as

In this Brief Report we have derived the TH distribution , guide to the eye.

only for the original version of the NS model of vehicular

traffic on single-lane highways. Equatig20), which is the  with empirical data from the highway traffic the TH distri-
main analytical result of this Brief Report, is the exact ex-bution will have to be computed by incorporating some of
pression for the TH distribution in this model whaf,,, the recent generalizations and extensig@$ of the NS
=1. However, forV,,=>1, the TH distributions in this Model proposed recently in the literature.

model have been obtained by carrying out computer simula-
tion and are, therefore, approximate. Nevertheless, our re-
sults demonstrate that, in spite of being only a minimal One of the author$D.C.) thanks L. Santen, A. Schad-
model, the NS model captures the essential qualitative feaschneider, S. Sinha, and D. Stauffer for useful comments and
tures of the TH distribution of vehicular traffic on highways the Alexander von Humboldt Foundation for partial support
[1]. But, in order to make a diregjuantitativecomparison through a research equipment grant.
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